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The density-functional approach based on the partition into subsystems was applied to study the benzene
dimer. For several structures, the calculated interaction energy and intermolecular distance were compared with
the previous theoretical results. A good agreement with high level ab initio correlated methods was found. For
instance, the interaction energies obtained in this work and the CCSD(T) method agree within 0.1 ± 0.6 kcal/mol
depending on the structure of the dimer. The structure with the largest interaction energy is T-shaped, in
agreement with CCSD(T) results. The T-shaped structure of benzene dimer was suggested by several
experimental measurements. The calculated interaction energy of 2.09 kcal/mol agrees also well with
experimental estimates based on the dissociation energy which ranges from 1.6� 0.2 to 2.4� 0.4 kcal/mol and
the estimated zero-point vibration energy of 0.3 ± 0.5 kcal/mol.

1. Introduction. ± Current implementation of approaches based on density-
functional theory (DFT) or ab initio methods makes it possible to study relatively large
organic systems by means of computer modelling. Such studies might be useful to
interpret experimental results by calculating molecular properties such as geometries,
dipole moments, electrostatic potentials, reactivity indices, etc. [1]. Moreover, the
computational methods can be applied to estimate the bonding energies, reaction
barriers, and reaction energetics. The computational studies can be used also to
determine reaction pathways. The predictive power of such calculations hinges on the
accuracy of the theoretical approach used. Although there is a clear hierarchy of ab
initio theoretical methods that culminates in the so-called chemical accuracy for any
molecular system, their practical applications are limited to systems of a rather small
size. Most of the interesting problems in organic chemistry lie, therefore, outside of the
range of applicability of this accurate theoretical approach. Moreover, experience
shows that even moderately accurate theoretical methods can be used as a tool to assist
experimental research. Let us take molecular geometry as an example. In DFT,
calculations based on local-density approximation (LDA) lead usually to very good
geometries for covalently bound complexes. The bond lengths agree within 0.01 ±
0.03 � with experimental measurements. However, the accuracy of the energies
calculated by the same approach is not satisfactory (atomization energies differ
frequently from experimental values by as much as 10 kcal/mol). It is worthwhile to
recall here that LDA is the simplest nonempirical variant of DFT. It is appealing,
therefore, to use computer simulations based on approximate methods to study large
systems of interest in organic chemistry. Unfortunately, as far as these methods are
concerned, a clear hierarchy of approaches leading to exact results does not exist yet in
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DFT. To apply an approximate computational method efficiently, its advantages and
flaws must be well understood. In this work, we address one very important issue of
DFT, namely the weak nonbonding (or van der Waals) interactions. Such interactions
play a very important role in determining the structure of large flexible molecules
(biomolecules, polymers). Weak nonbonding interactions influence significantly the
properties of solvated molecules and systems physisorbed on different surfaces. They
also determine the steric barriers which might influence reaction pathways.

Since the computational cost of accurate wave-function based methods is
prohibitively large for systems of the size of benzene dimer, practical implementations
of density-functional theory applicable to the study of weak intermolecular complexes
are highly desirable. Unfortunately, applying DFT in its conventional Kohn-Sham [2]
formulation to study weak complexes faces serious difficulties, because London
dispersion forces can not be properly accounted for by means of semi-local
approximate functionals of exchange-correlation energy. The unsuitability of semi-
local functionals may be illustrated by considering the extreme case of two spherically
symmetric centers with nonoverlapping electron densities. In such a case, all semi-local
exchange-correlation functionals do lead to no attraction between the centers. In real
intermolecular complexes, the electron-density overlap is usually small but non-
negligible, and different approximate exchange-correlation functionals describe the
corresponding energetical components in a rather erratic way [3 ± 7]. The local density
approximation leads systematically to too strong attraction, whereas the results of the
generalized gradient-approximation (GGA) calculations depend critically on the
choice of the applied exchange-correlation functional [8]. Among the GGA func-
tionals, the ones developed recently by Perdew and co-workers (PW91 [9], PBE [10])
appear the most suitable for weak complexes leading to rather reasonable interaction
energies for complexes in which dispersion forces are known to dominate
[5] [6] [8] [11]. But even these functionals lead to less reliable results than correlated
wave-function based approaches.

In this work, we explore the applicability of another DFT route to obtain the
interaction energies of weak intermolecular complexes which is based on partitioning
of total electron density [12] [13]. In this approach, the total electron density is
partitioned into two subsystems, and the total energy can be minimized with respect to
variations of electron density restricted to a selected subsystem. The computer
implementation of our subsystems-based approach was recently refined [14 ± 16] and
applied to study the properties of embedded molecules [17] as well as different
intermolecular complexes including those interacting by H-bonding [16] and weak
complexes comprising benzene [18]. The latter studies showed that the subsystems-
based approach leads to results usually superior to those obtained using conventional
Kohn-Sham calculations. Moreover, the results are less dependent on the choice of the
approximate functionals than the corresponding Kohn-Sham ones.

Here, we apply the subsystems-based approach to the benzene dimer. The method
will be described in the next section.

The benzene-benzene interaction is of the nonbonding type, and it is the prototype
of p-p interaction between aromatic molecules that influences the structure of such
biopolymers as proteins and DNA. The interaction energy of the benzene dimer
consists principally of dispersion, electrostatic, and exchange-repulsion energies. The
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dispersion energy, which is due to the electronic correlations effects, is always attractive
and decreases as Rÿ6, where R is the separation between centers of mass of the two
benzene moieties. It is largest for the sandwich structure e (Fig. 1) and smallest for the
T-shaped structures a ± d. The electrostatic energy arises principally from the
interaction between permanent quadrupoles of the benzenes and decreases as Rÿ5.
Depending on the relative orientation of the benzenes, the electrostatic interaction can
be attractive or repulsive; it is attractive for the T-shaped structure and repulsive for the
sandwich structure. The exchange-repulsion energy, which is linked to the overlap of
occupied orbitals of the two interacting molecules, is repulsive, preventing the two
benzenes from approaching too closely. Some experimental [19 ± 39] and theoretical
[40 ± 66] results related to the benzene dimer are available in the literature, but the
detailed structure is still not known.

Fig. 1. Different structures of the benzene dimer studied in this work
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Klemperer and co-workers [20] [21] deduced from measurements of the electric
deflection of molecular beams that the benzene dimer is polar and an asymmetric top,
which could be the T-shaped structure. In solid benzene, neutron-diffraction experi-
ments [19] revealed that the structures correspond to parallel displaced and T-shaped
orientations of the benzene molecules, such as the ones observed for the aromatic
residues in protein crystal structures [35] [36]. Using mass-selected, resonantly
enhanced two-color ionization spectroscopy (R2PI), Hopkins et al. [22] obtained the
S1 S0 excitation spectrum of the benzene dimer. They found that the 61 vibration is
split in the dimer by nearly the same amount as that of the benzene solid, and that the 00

0

band is induced nearly as strongly in the dimer as it is in the solid.
Measurements of the vibronic spectra of isotopically substituted benzene dimer

indicate that the two benzenes are equivalent by symmetry, which excludes the T-
shaped structure [24] [25] [29] [42]. Schlag and co-workers [24] [25] suggested the V-
shaped structure (the dihedral angle between the planes of the two benzenes is
estimated to lie between 708 and 908), whereas Bernstein and co-workers [29] [42]
proposed a parallel displaced structure g. Other experimental techniques provide,
however, a strong indication that the structure of the benzene dimer is T-shaped.
Henson et al. [30] [31] reported ionization-detected stimulated Raman spectroscopy
(IDSRS) measurements on benzene dimer isotopomers, and they argued that their
results provided evidence for a ground state with symmetrically inequivalent benzene
moieties, and then proposed a T-shaped structure in which the benzene moiety at the
top of the T is free to rotate about its C6 axis. The same experimental technique led
Ebata et al. [33] to the conclusion that two isomers coexist; one with a separation
between centers of mass of R� 3.6 � and another with R� 5.0 �. From rotationally
resolved spectra of microwave experiments, Arunan and Gutowsky [34] conclude that
the benzene dimer is T-shaped with R� 4.96 �. They pointed out, however, that the
existence of another state with lower energy was not excluded. With mass-selected
hole-burning spectroscopy, Schlag�s group [28] found that at least two stable isomers
may be found: the T-shaped and probably the parallel displaced structure at very low
temperature.

In summary, the reported experimental results indicate that the T-shaped structure
is probably a stable minimum, but other such structures with appreciable population
are not excluded. Another explanation for the disagreements between the results of
different experiments is the possibility of a rapid interconversion between several local
minima separated by low barriers.

The thermodynamic parameters of the benzene dimer were reported by several
experimentors [27] [37] [38]: the dissociation energy D0 was estimated by Grover et al.
[37] to be 2.4� 0.4 kcal/mol, and to be 1.6� 0.2 kcal/mol by Krause et al. [38], who
estimated also the zero-point vibration energy to be 0.5 kcal/mol.

There have been a large number of theoretical studies on the benzene dimer. Some
of the first ab initio studies of the potential-energy surface of the benzene dimer include
configuration interaction (CI) calculations of Karlström et al. [41], Hartree-Fock (HF)
calculations of CÏaÂrsky et al. [47], and second-order Mùller-Plesset (MP2) calculations
of Hobza et al. [48]. Due to the relatively small basis sets used in these calculations, the
results cannot be considered very reliable. More recently, second- and fourth-order
Mùller-Plesset calculations have been reported by Hobza et al. [50] [51] [53] [54], Jaffe
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et al. [61], and Tsuzuki et al. [56 ± 59], the latter authors having performed an extensive
study of the basis set truncation error. Hobza et al. [53] and Tsuzuki et al. [58] [59] also
carried out calculations with coupled-cluster singles and doubles theory with perturba-
tional triples corrections (CCSD(T)), which are the most accurate ab initio results
currently available. In the following, these CCSD(T) results will be considered as a
reference for comparison. Compared to experimental and highly accurate CCSD(T)
results, the MP2 method overestimates the interaction energies, and the most stable
structure is the parallel displaced structure (CCSD(T) results are slightly in favour of
the T-shaped structure). Due to the large contribution of dispersion interactions, the
Hartree-Fock theory leads to rather unsatisfactory results for the benzene dimer [47].
Also, the reported DFT calculations based on Kohn-Sham equations and applying
different exchange-correlation functionals do not lead to satisfactory results
[52] [59] [62].

Using the Fraga potentials, Rubio et al. [45] have studied different structures of the
benzene dimer. They calculated the interaction energy and determined the nature of
the stationary points. Other recent studies of the benzene dimer are those of Chipot et
al. [60], who performed gas-phase simulations with molecular mechanics, and of Dang
[66], who have constructed a polarizable potential model for benzene with molecular
dynamics. So far, the best results seem to have been obtained with the CCSD(T)
method, which is also the most computationally expensive method. There have also
been some interesting discussions about the possible existence of a CÿH ´´´ p bond for
the T-shaped structure [53] [54] [64].

2. Method. ± We start with a short outline of the Kohn-Sham method, the most
commonly used DFT formalism. This will provide a necessary reference to the
subsystems-based approach applied in this work. According to Hohenberg-Kohn
theorems [67], the ground-state energy of an electronic system (e.g., atom, molecule,
and solid) can be expressed as a functional of the electron density (E�E[1]). In the
conventional Kohn-Sham formalism, E[1] is expressed using the Kohn-Sham total-
energy functional EKS[1] (atomic units are used in all equations)

EKS�1� � Ts�1� � J�1� � Exc�1� ÿ
P
A

R ZA

jrÿRAj
1�r�dr; (1)

Ts�1� � ÿ
1
2
PN
i�1

R
y�i �r�»2yi�r�dr; (2)

J�1� � 1
2

R R 1�r�1�r'�
jrÿ r'j dr dr'; (3)

where Ts[1] represents the functional of the kinetic energy in the non-interacting
electrons reference system, J[1] is the classical Coulomb repulsion, and Exc[1] denotes
the exchange-correlation functional, which accounts for the nonclassical many-body
effects. The exact form of Exc[1] is unknown and hence must be approximated. The last
term of Eqn. 1 represents the electron-nucleus attraction energy, with the index A
running through all the nuclei, of charge ZA at the position RA, of the system. The
variational principle leads to the one-electron self-consistent equations (Kohn-Sham)
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ÿ 1
2

»2 � veff�r�
� �

yi�r� � eiyi�r�; (4)

veff�r� �
R 1�r'�
jrÿ r'j dr'� dExc�1�

d1
ÿP

A

ZA

jrÿRAj
(5)

1�r� �PN
i�1
jyi�r�j2: (6)

In the subsystems-based approach (which will be referred to as Kohn-Sham
equations with Constrained Electron Density, KSCED), the total energy of a system
composed of two subsystems (two molecules forming a weak complex for instance) of
densities 11 and 12 is represented as the bi-functional EKSCED [11, 12] of 11 and 12

[12] [13] [68]

EKSCED�11; 12� � EKS�11 � 12� � Ts�11� � Ts�12� � Tnadd
s �11; 12�

� 1
2

R R �11�r� � 12�r���11�r'� � 12�r'��
jrÿ r'j dr dr'

�Exc�11 � 12� ÿ
P
A

R ZA

jrÿRAj
�11�r� � 12�r��dr; (7)

where Tnadd
s [11, 12] denotes the nonadditive kinetic energy bi-functional which is

defined as

Tnadd
s �11; 12� � Ts�11 � 12� ÿ Ts�11� ÿ Ts�12�: (8)

As in the case of exchange-correlation functional, the analytic form of Tnadd
s [11, 12] is

not known, and any practical calculation relies on approximations.
Partitioning of the electron density makes it possible to perform the minimization

of the total energy following a step-wise procedure in which the energy is minimized
with respect to either 11 or 12 [14]. The electron density 1J (J� 1, 2) is represented by

1J�r� �
PNJ

i�1
jyKSCED

i�J� �r�j2; (9)

where yi(J) is the wave-function of an electron of the subsystem J composed of NJ

electrons. Similar steps as those used to derive Kohn-Sham equations lead to the
following one-electron (KSCED) equations for yKSCED

i�J� [12] [13]:

ÿ 1
2

»2 � vKSCED
eff�J� �r�

� �
yKSCED

i�J� �r� � ei�J�y
KSCED
i�J� �r�; (10)

where

vKSCED
eff�J� �r� �

R 11�r'�
jrÿ r'j dr'� R 12�r'�

jrÿ r'j dr'ÿP
A

ZA

jrÿRAj

� dExc�11 � 12�
d1J

� dTnadd
s �11 � 12�

d1J

�11�
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The use of the KSCED equations to minimize the total energy of the system is
performed in several steps (Fig. 2). First, the density 11 of subsystem 1 is calculated
by means of Kohn-Sham equations (cycle 0), then in the next step (cycle 1), the
KSCED equations are employed to calculate the density 12 of subsystem 2, which is
polarized by subsystem 1. In cycle 2, the role of the two subsystems is interchanged, and
the procedure is repeated until convergence, which is often achieved after cycle 2 or
even 1.

2.1. Details of the Calculations. The calculations were performed with the modified
version of the deMon program [69] into which the KSCED formalism was implemented
[14] [69d]. The two subsystems corresponding to electron densities 11 and 12 were
identified with the two interacting benzene molecules, respectively, and, during the
calculations, the intramolecular geometry of the two benzenes was kept fixed at the
experimental geometry [70] (RCC� 1.397 �, RCH� 1.084 �), i.e., only the intermolec-
ular degrees of freedom were varied.

Fig. 2. Scheme of the �freeze and thaw� cycle of the KSCED equations
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Practical applications of the KSCED scheme rely on the approximations used for
Exc[1] and Tnadd

s [11,12] . In the current implementation of the KSCED equations, we
apply the following approximate functionals:

i) For Exc[1]�Ex[1]�Ec[1], the PW91 functional which has been shown to be the
best GGA functional for application to van der Waals complexes (see [8] and
refs. cit. therein)

Ex�1� � ÿCx

R
1

4
3�r�FPW91�s�r��dr; Ec�1� � EPW91

c �1�; (12)

where Cx� (3/4)(3/p)1/3.
ii) For Tnadd

s [11, 12]�Ts[11� 12]ÿTs[11]ÿTs[12], the gradient-dependent func-
tional obtained using the conjecture of Lee, Lee, and Parr [71]

Ts�1� � CF

R
1

5
3�r�FPW91�s�r��dr; (13)

where CF� (3/10)(3p2)2/3.

The enhancement factor FPW91(s) is

FPW91�s� � 1� 0:19645s sinhÿ1�7:7956s� � �0:2743ÿ 0:1508eÿ100s2�s2

1� 0:19645s sinhÿ1�7:7956s� � 0:004s4
(14)

where s�jr1 j /(21kF) is the scaled density gradient with kF� (3p21)1/3 the local Fermi
vector. It is important to note that the applied approximate functionals of exchange
energy and non-additive kinetic energy share the same analytic form of the gradient
dependency. The use of the same gradient dependency for the exchange and the
kinetic-energy functionals was originally proposed by Parr and co-workers [71] who
formulated the �conjointness conjecture�, which has been proven and tested for
Hartree-Fock electron densities [72 ± 74]. Numerical tests have been reported
supporting the conjecture also for Kohn-Sham electron densities [75]. The use of the
same analytic form of the gradient-dependent enhancement factor F(s) in the
approximate functionals Exc[1] and Tnadd

s [11, 12] lies at the origin of the significantly
weaker dependence of KSCED results on the particular form of F(s).

The Kohn-Sham equations for the calculation of an isolated benzene were
performed using the PW91 functional, Eqn. 12, for the exchange-correlation
energy.

The calculations were carried out using two different orbital basis sets: the first
basis (basis I) is Triple Zeta Valence with Polarization (TZVP) [76] with the following
contraction pattern (41/11) for H and (7111/411/1*) for C. The second used basis (basis
II) was developed by Partridge [77] [78]. This basis set is labeled in the deMon program
as OÿH MM(7s0p0d)� 4p for H and OÿC MM(13s8p0d)� 4d for C. The auxiliary
basis sets, with the contraction pattern (5,1) for H and (4,4) for C, were used to fit the
electron density [76]. The basis sets are distributed together with the deMon package
[69]. The exchange-correlation and nonadditive kinetic-energy components of the
effective potential were calculated numerically, i.e., without fitting functions. The
number of orbital basis functions used for the construction of the electron density 1J of
the benzene molecule in the complex is the same as that used for the isolated benzene
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(the basis functions centered on the atoms of the benzene of interest), and, hence, no
basis set superposition error (BSSE) [79] had to be corrected.

3. Results and Discussion. ± Ten structures of the benzene dimer were considered
(a ± j ; Fig. 1). For each of these structures, the optimization of geometry has been
performed, under the constraints imposed by the symmetry of the structure. The
separation between centers of mass R of the two benzenes corresponding to the
greatest stability of the structure was found by means of single-point-energy
calculations. The interaction energy DE(R) is defined as

DE(R)�E(C6H6)2
(R)ÿ 2EC6H6

, (15)

where E(C6H6)2
(R) is the total energy of the benzene dimer obtained with the KSCED

method and 2EC6H6
is the total energy of two infinitely separated benzene molecules

(equivalent to the sum of total energies of two isolated benzenes calculated by the
Kohn-Sham method). Except for structure g, the minima on the potential-energy
surface were found by means of a one-dimensional scan corresponding to the variation
of the intermolecular distance R. For the parallel displaced structure g, two degrees of
freedom were considered (the distance z between the planes of the two benzenes and
the horizontal displacement x).

For each analyzed geometry, to minimize the KSCED total energy bifunctional
several �freeze-and-thaw� cycles were performed (Fig. 2). The convergence was
generally achieved in the second iteration (cycle 2). Figs. 3 and 4 show examples of
the convergence for the sandwich and parallel displaced structures, e and g,
respectively, for basis I. The KSCED results for the separation between centers of
mass R and interaction energy DE of the optimized structures are presented in the
Table, and for comparison, the results obtained with other methods taken from various
references are also given.

It may be seen that the choice of basis set does not influence the results significantly,
the maximal difference for the intermolecular distance R being 0.05 � for the structure
h, and the maximal difference of the calculated interaction energy DE being always
smaller than 0.1 kcal/mol. In the following, therefore, only the results obtained with
basis II will be discussed.

Among the structures studied, the one with the greatest interaction energy (DE�
ÿ2.09 kcal/mol) is c which is T-shaped with R� 4.80 �. The structure d, which is less
stable than c by 0.1 kcal/mol, can be obtained from c by rotating one benzene molecule
(the lower one of c and d in Fig. 1) by 308 about its C6 axis. Therefore, we can conclude
that in the T-shaped (edge-face) geometry, the rotation of the lower benzene molecule
is not free but is slightly hindered because of a barrier of at least 0.1 kcal/mol. The
structure a is less stable than both the structures c and d by 0.23 and 0.13 kcal/mol,
respectively. This also indicates that the rotation of the upper benzene molecule about
its C6 axis is also hindered. Note that the structures a and c are related by a 308 rotation.
The geometry and thermodynamic parameters of structure b are almost identical to
those of structure a ; the position of the minimum is the same and the interaction energy
differs by ca. 0.01 kcal/mol. This indicates that in this orientation (T-shaped, point-face)
the benzenes are free to rotate around the C6 axis of the lower benzene and hence
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constitute an asymmetric top. The sandwich structures e and f, with their interaction
energies amounting to ÿ1.44 and ÿ1.26 kcal/mol, respectively, are less stable than the
T-shaped structures. Whereas these smaller interaction energies for the sandwich
structures could be explained by the quadrupole-quadrupole electrostatic interaction
being attractive for the T-shaped structures, it is of repulsive nature for the sandwich
structures and hence destabilizes the dimer in this orientation. For the parallel
displaced structure g, two minima separated by a small energy barrier of ca. 0.05 kcal/
mol were found (Fig. 4 with basis I). For both of them, the distance between the
benzene planes (z) equals 3.10 �, and the horizontal displacement (x) amounts to
2.22 � for one minimum and 2.95 � for the other. The interaction energies at these two
minima are very close to each other ÿ1.92 and ÿ1.95 kcal/mol, and to the value DE for
structure d. For structure h, the interaction energy (ÿ1.62 kcal/mol) is larger than that
of sandwich structures. It is smaller, however, than the interaction energy for the T-
shaped structures. Finally, the last considered two structures, i and j, are by far less
stable (ca. ÿ0.5 kcal/mol).

Turning back to the experimental results, it has been found that for the T-shaped
structures a and b (point-face) the R parameter equals 4.96 � [34], and the lower
benzene rotates freely about its C6 axis [31]. The reported experimental values of the
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dissociation energy D0 (Table) fall into a large range (between 1.6 and 2.4 kcal/mol).
The zero-point vibration energy was estimated at ca. 0.3 ± 0.5 kcal/mol. Combining all
the experimental estimates and measurements leads to a rather large range for the
depth of the potential minimum De, lying roughly between 1.5 and 3 kcal/mol. Since the
exact structure of the benzene dimer has not yet been determined experimentally, the
above interaction energies can be attributed to one of the possible T-shaped structures
and/or perhaps for one or several other isomers. Our KSCED structural results agree
well with experimental measurements (RKSCED� 4.93 �, Rexp� 4.96 �). Our calcula-
tions indicate, however, that the structures a and b might not correspond to local
minima. The very closely lying structures c and d, which can be obtained from the
structures a and b, respectively, by rotating the upper benzene around its C6 axis by 308,
are more stable.

The calculated values of the interaction energy at the lowest points of the potential
energy surface considered (ÿ2.09 kcal/mol for structure c and ca. ÿ1.95 kcal/mol for
structures d and g) fall into the range of the experimental values.

The comparisons of our results with those obtained by other theoretical methods
shows that the KSCED and CCSD(T) results agree rather well. For structure a, the
interaction energies differ by 0.64 kcal/mol, with similar separations between centers of
mass. For the sandwich structure e, the interaction energies differ by only 0.30 kcal/mol,
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but the separations between centers of mass differ more (R� 3.37 � for KSCED, R�
3.8 � for CCSD(T) and MP2). For the parallel displaced structure g, the interaction
energy obtained with KSCED and CCSD(T) are in remarkable good agreement
(ÿ1.95 kcal/mol for KSCED vs. ÿ2.01 kcal/mol for CCSD(T)). This agreement must
be taken with care because, contrasting with the other geometries discussed so far, the
published CCSD(T) results were obtained with medium-quality basis sets for this
geometry [53]. The previously discussed CCSD(T) interaction energies for T-shaped
and sandwich structures are actually estimations at the basis set limit [58]. For structure
h, the separation between centers of mass obtained with KSCED is shorter by 0.31 �
than the MP2 one, both methods giving comparable interaction energies (ÿ1.62 kcal/
mol for KSCED and ÿ1.87 kcal/mol for MP2).
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Table 1. KSCED Interaction Energies DE of the Optimized Structures of the Benzene Dimer Obtained with Basis
I and II (in parenthesis). R is the benzene-benzene center of mass separation. Selected results (BSSE-

corrected) obtained with other methods, taken from the indicated references are also given.

Structure Method R [�] ÿDE [kcal/mol]

a KSCED 4.94 (4.93) 1.77 (1.86)
MP2a) 5.0 3.22
CCSD(T)b) 5.0 2.50
DFT/B3P86c) 5.6 0.29
DFT/PW91d) 5.0 0.65
Experimente) 4.96

c KSCED 4.80 (4.80) 2.00 (2.09)
MP2 5.0 f) 2.51 f)

d KSCED 4.82 (4.82) 1.91 (1.99)
DFT/LDAg) 4.8 2.87
DFT/BLYPg) 1

e KSCED 3.33 (3.37) 1.48 (1.44)
MP2a) 3.8 3.06
CCSD(T)b) 3.8 1.74
DFT/LDAg) 3.8 1.20
DFT/BLYPc)g) 1
DFT/B3P86c) 1

f KSCED 3.40 (3.40) 1.25 (1.26)

g KSCED 3.80 (3.81) 1.91 (1.92)
4.27 (4.28) 1.90 (1.95)

MP2d) 3.94 4.20
CCSD(T)h) 3.85 2.01
DFT/B3P86c) 1

h KSCED 5.86 (5.91) 1.62 (1.62)
MP2a) 6.22 1.87

i KSCED 6.78 (6.75) 0.54 (0.56)

j KSCED 6.63 (6.63) 0.53 (0.53)

Experiment D0� 2.4� 0.4i)
D0� 1.6� 0.5j)
D0� 1.6� 0.2k)

a) From [57]. b) From [58]. c) From [52]. d) From [59]. e) From [34]. f) From [61]. g) From [62]. h) From [53].
i) From [37]. j) From [27]. k) From [38].



It is worthwhile to point out that our KSCED results agree better with the high
accurate CCSD(T) than the ones of Mùller-Plesset calculations which systematically
overestimate the interaction energies. Compared to Kohn-Sham calculations which
systematically underestimate the interaction energy (leading sometimes to purely
repulsive potential energy curve), the KSCED results are clearly superior.

4. Conclusions. ± In this work, the interaction energy of the benzene dimer was
calculated by a recently developed DFT approach based on subsystems. As in the
previously studied case of other complexes involving benzene [18], good agreement
between the calculated and experimental interaction energies is obtained. Our
calculations predict that the most stable structure is T-shaped in agreement with
experimental results and previously reported benchmark ab initio calculations. For
several structures, it is shown that the KSCED results follow closely the tendencies
found with CCSD(T) calculations. Compared to Mùller-Plesset calculations and DFT
calculations based on Kohn-Sham equations, the KSCED method appears superior.
This indicates that the KSCED formalism offers a theoretical route to overcome the
well-known difficulties of DFT within Kohn-Sham framework for weakly bound
complexes.
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